Description

Street sweeping uses mechanical pavement cleaning practices to reduce sediment, litter and other debris washed into storm sewers by runoff. This can reduce pollutant loading to receiving waters and in some cases reduce clogging of storm sewers and prolong the life of infiltration oriented BMPs and reduce clogging of outlet structures in detention BMPs.

Different designs are available with typical sweepers categorized as a broom and conveyor belt sweeper, wet or dry vacuum-assisted sweepers, and regenerative-air sweepers. The effectiveness of street sweeping is dependent upon particle loadings in the area being swept, street texture, moisture conditions, parked car management, equipment operating conditions and frequency of cleaning (Pitt et al. 2004).

Appropriate Uses

Street sweeping is an appropriate technique in urban areas where sediment and litter accumulation on streets is of concern for aesthetic, sanitary, water quality, and air quality reasons. From a pollutant loading perspective, street cleaning equipment can be most effective in areas where the surface to be cleaned is the major source of contaminants. These areas include freeways, large commercial parking lots, and paved storage areas (Pitt et al. 2004). Where significant sediment accumulation occurs on pervious surfaces tributary to infiltration BMPs, street sweeping may help to reduce clogging of infiltration media. In areas where construction activity is occurring, street sweeping should occur as part of construction site stormwater management plans. Vacuuming of permeable pavement systems is also considered a basic routine maintenance practice to maintain the BMP in effective operating condition. See the maintenance chapter for more information on permeable pavement systems. Not all sweepers are appropriate for this application.

Practice Guidelines

1. Post street sweeping schedules with signs and on local government websites so that cars are not parked on the street during designated sweeping days.

2. Sweeping frequency is dependent on local government budget, staffing, and equipment availability, but monthly sweeping during non-winter months is a common approach in the metro Denver urban

---

area. Consider increasing sweeping frequency based on factors such as traffic volume, land use, field observations of sediment and trash accumulation, proximity to watercourses, etc. For example:

- Increase the sweeping frequency for streets with high pollutant loadings, especially in high traffic and industrial areas.
- Conduct street sweeping prior to wetter seasons to remove accumulated sediments.
- Increase the sweeping frequency for streets in special problem areas such as special events, high litter or erosion zones.

3. Perform street cleaning during dry weather if possible.

4. Avoid wet cleaning the street; instead, utilize dry methods where possible.

5. Maintain cleaning equipment in good working condition and purchase replacement equipment as needed. Old sweepers should be replaced with more technologically advanced sweepers (preferably regenerative air sweepers) that maximize pollutant removal.

6. Operate sweepers at manufacturer recommended optimal speed levels to increase effectiveness.

7. Regularly inspect vehicles and equipment for leaks and repair promptly.

8. Keep accurate logs of the number of curb-miles swept and the amount of waste collected.

9. Dispose of street sweeping debris and dirt at a landfill.

10. Do not store swept material along the side of the street or near a storm drain inlet.

Changes in Street Sweeper Technology (Source: Center for Watershed Protection 2002)

At one time, street sweepers were thought to have great potential to remove stormwater pollutants from urban street surfaces and were widely touted as a stormwater treatment practice in many communities. Street sweeping gradually fell out of favor, largely as a result of performance monitoring conducted as part of the National Urban Runoff Program (NURP). These studies generally concluded that street sweepers were not very effective in reducing pollutant loads (USEPA, 1983). The primary reason for the mediocre performance was that mechanical sweepers of that era were unable to pick up fine-grained sediment particles that carry a substantial portion of the stormwater pollutant load. In addition, the performance of sweepers is constrained by that portion of a street’s stormwater pollutant load delivered from outside street pavements (e.g., pollutants that wash onto the street from adjacent areas or are directly deposited on the street by rainfall). Street sweeping technology, however, has evolved considerably since the days of the NURP testing. Today, communities have a choice in three basic sweeping technologies to clean their urban streets: traditional mechanical sweepers that utilize a broom and conveyor belt, vacuum-assisted sweepers, and regenerative-air sweepers (those that blast air onto the pavement to loosen sediment particles and vacuum them into a hopper).

For more information, see http://www.cwp.org/Resource_Library/Center_Docs/PWP/ELC_PWP121.pdf